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Abstract 

Stability theory for fluid mixtures is used to calculate the spinodal and the critical locus for a 

system containing one discrete light component and one continuously distributed heavy 

“component”. For reduction to practice, the criteria developed here are suitable for molecular-

thermodynamic models where the model parameters depend on the distribution variable that 

characterizes the continuous “component”. To illustrate, the Soave-Redlich-Kwong equation of 

state is used to calculate critical properties of alkane mixtures where methane(C1) is the discrete 

component and C2-C16 comprise a continuous “component”. Calculated results show that, while 

systems containing methane and primarily small paraffins show a Type I critical locus, those 

containing methane and appreciable amounts of large paraffins show a Type V critical locus. 

These results are consistent with experimental critical-locus data for C1-C3 (Type I) and those for 

C1-C6 (Type V).  

 

1 Introduction 

In typical industrial chemical processes, the number of components is very large; well-known 

examples are crude oil or natural gas. It is often not practical, indeed it may be impossible, to 

perform the detailed chemical analysis to determine the exact compositions of such systems. In 

some cases, chemical analysis can provide only a few statistical properties, such as molar-mass 

distribution, normal-boiling-point distribution and so on. Continuous thermodynamics [1-10] has 

been developed to calculate the thermodynamic properties of such multi-component systems. In 

continuous thermodynamics, a distribution function replaces the discrete composition 

variable(usually the mole fraction) such that for a system of many components, calculation of 

thermodynamic properties is much simplified. A review concerning the application of continuous 

thermodynamics to the calculation of phase equilibria was given by Cotterman [7].  
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Thermodynamic stability theory can be used to calculate the critical properties of a fluid 

mixture [8,9,11-15]. A continuous “component” comprises an infinite number of true 

components. Therefore, for a continuous “component, it is impractical to use the determinant-

form stability criteria for mixtures of discrete components where the dimension of the 

determinant is equal to the number of true components.  

Johnson et. al. [8] established stability criteria for a polydisperse system; they showed that 

these criteria are equivalent to those for a system containing an infinite number of discrete 

components. These criteria can be expressed as a Fredholm determinant in the form of an infinite 

series. But the method of Johnson et. al. is not practical because of the infinite series; reduction to 

practice requires truncating the infinite series[9], thereby introducing error. However, for some 

systems, such as paraffin mixtures and polydisperse polymer solutions, the parameters of an 

equation of state can be expressed by simple functions of a suitable characterizing variable, such 

as molecular weight, boiling point, the size of particles etc. For example, Cotterman et. al. [10] 

found that when the Lorentz-Berthelot mixing rules are used in the Soave-Redlich-Kwong(SRK) 

equation of state, the square root of the attractive parameter( ) and the repulsive parameter(b) 

are linear functions of alkane molecular weight. Thus, the parameters of the SRK equation of 

state can be expressed as functions of mean molecular weight, or, more general, by the moments 

of the characterizing variable of the distribution function. In such cases, the stability criteria can 

be much simplified. They can be expressed by a function of the moments of the characterizing 

variable, e.g. by average molecular weight which is the first moment of the molecular-weight 

distribution.  

2/1a

Browarzik et. al.[11,12], Hu et. al.[13,14] and Cai et. al.[15] derived stability criteria for a 

polydisperse system described by an equation of state whose parameters are linear functions of 

average molecular weight( M ). Bellier-Castella et. al. [16] derived stability criteria for a 

polydisperse system modeled by the van der Waals equation of state where the parameters are 

functions of the average square and the average cube of the molecular diameter( 32 ,σσ ). 

However, because these earlier studies considered only some specific moments of the distribution 

variables, the critical criteria are not general. For example, the criteria for a free-energy model 

that is a function of the first-order moment are different from those for the same free energy 

model that is a function of higher-order moments. Although previous authors[11-16] claimed that 

their methods can be used to derive the stability criteria when the free energy is a function of any 



order moments, it is difficult (or at least very tedious) to use their method to derive a more 

general theory. Unfortunately, the most widely used free-energy models (or equations of state) of 

polydisperse systems are usually concerned with higher-order moments. For example, the hard-

sphere contribution to the free energy in the SAFT model is a function of the average diameter, 

the average square diameter and the average segment volume [17]. At this time, when applied to 

continuous systems we do not know the stability criteria for those models which depend on 

higher-order moments of model parameters.  

This work provides a method for deriving the critical criteria of polydisperse systems where 

the residual part of the free energy is a function of the moments of one of more distribution 

variables. In this work, we derive the criteria for the critical point of a system containing one 

discrete and one continuous “component”. Our focus is directed to a method that uses arbitrary 

moments of the distribution variables for establishing critical criteria. Although our work is 

applicable to systems characterized by more than one continuous variable, we confine attention to 

a system in which there is only one distribution function of a single variable. Our derivation is 

inspired by Heideman’s work [18] concerning critical criteria for a multicomponent system 

described by discrete compositions. Following our derivation, we calculate the critical loci of 

alkane mixtures in which methane is a discrete component and all other alkanes comprise a 

continuous “component”. Such mixtures are encountered in natural-gas technology.  

 

2. Critical criteria of a system that contains one discrete and one continuous “component” 

Consider a system containing one discrete and one continuous (polydisperse) “component”. 

The free energy per unit volume f is given by 
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where  and  are, respectively, contributions from the ideal-gas mixture, from the 

residual part of the Helmhotz energy per unit volume and from the molar standard-state 

Helmholtz energy of virtual component i  in the continuous “component”; ρ  is the 

molar density of virtual component i  in the continuous component where K is a very large 

number;  is the molar density of the discrete component (e.g. methane); R  is the gas constant 

and T  is temperature. The residual part of the Helmholtz energy is a function of the parameters 

of the model used to describe the system. For example, for the van der Waals equation, parameter 
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a  is a measure of attractive forces and parameter b  is a measure of repulsive forces. For the 

square-well fluid, the parameters are particle size and depth and width of the square well. For a 

continuous component, it is convenient to express the residual part of the Helmholtz energy as a 

function of the moments, i.e.  
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where  is the selected characterizing variable of the distribution function of the continuous 

component, e.g. molecular weight; 

M
mM

tρ

 is the m-th order moment;  is the order of the highest 

order moment involved in the model;  is the total molar density of the continuous component. 

In the continuous-component limit, i.e. K , the density distribution can be described by a 

distribution function ρ ⋅  where  is a probability distribution function with 

normalization 
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where  represents the distribution variable M  of the i-th virtual discrete component in the 

continuous “component”. The 2

iM
nd-order variation of Eq (1) is given by 
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To derive stability criteria, the key problem concerns the second term on the right hand side of Eq. 

(5). This term contains an infinite number of variations δ . The detailed derivation is given in 

the Appendix. Here we only give the final result.  

iρ

 

2.1. Spinodal Criterion 

 The spinodal criterion is given by function : spF

 0                 (6) det )2()2(sp == +×+ NNF A

where subscript sp represents “spinodal” and the matrix  is given by A
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where , ; subscript (  represents the  columns and 

rows of matrix A; subscripts s, m represent the derivative with respect to  and with respect to 
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2.2 Critical Criterion 

The critical criterion is given by function : crF
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where subscript cr represents “critical” and  is the element of matrix .  ijA A

 

3. Stability test 

To locate critical points, two stability criteria must also be satisfied [18]; they are 

(1) Mechanical stability:  
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 (2) Phase splitting stability:  
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where are the roots of Eqs.(6) and (8), µ  and  are, respectively, the chemical 

potential of the discrete component and that of the continuous “component” with variable M;  

is the mole fraction of the continuous “component”; superscript c represents the system of 

interest whose critical temperature and pressure is calculated. Eq. (10) requires that we must try 

various  and various forms of distribution function ϕ  to calculate the chemical potential 

and compare them with the one of interest ( ). The mole fraction x  and distribution 

function  can be of any form that satisfies the conditions 0  and  

and ϕ . If there exists a value of  or a form of ϕ  such that Eq.(10) is not satisfied 

while eqs.(9) are valid, then roots T  of Eqs. (6) and (8) are not the correct critical point 

because they probably describe a metastable state. It is impractical to calculate Eq. (10) with all 

possible forms of ϕ . Fortunately, Bellier-Castella et. al. [16] have shown that we need not try 

various distribution functions. We only need to calculate Eq. (10) with various values of . For 

a continuous “component”, the chemical potential is defined by a functional derivative given by 

[6]: 
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The free energy per unit volume can be expressed as a functional of the distribution function 
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where  means functional and ∆  is a constant which does not affect the result. 

Substituting Eq. (12) into Eq.(11), the chemical potential of a continuous component is given by 
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Because the residual part of the free energy is only a function of moments(see Eq(2)), the 

functional derivative can be expressed as 
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where the functional derivatives are given by 
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The chemical potential of the discrete component is obtained from the customary thermodynamic 

relation 
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4. Reduction to Practice: the SRK Equation of State 

 To illustrate the stability criteria developed in this work, we calculate the critical loci of 

alkane mixtures where methane is the discrete component and all other alkanes form a continuous 

pseudo-component. We use Soave’s modified Redlich-Kwong(SRK) equation of state: 
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where  is the pressure; T  is the temperature;  is the molar volume; ρ  is the molar 

density and a  are the equation-of-state parameters. Pure-component parameters are 

obtained from pure-component critical temperatures and pressures and from Pitzer’s acentric 

factor ω : 
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For mixtures, the mixing rules chosen here are 
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where  is a binary interaction parameter  and  is mole fraction. From the SRK 

equation, the residual part of the Helmholtz energy per unit volume is 
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where  is the total molar density. For a system containing one discrete component and 

one continuous component, the ideal part of the Helmholtz energy per unit volume is given by 
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Cotterman et. al. [10] showed that for the SRK equation applied to paraffins, )(Ta  and b  are 

linear functions of molecular weight  M

MTaTaTMa )()(),( )1()0( +=  
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where , , b  and b  are known constants. Substituting Eq. (23) into Eq. (22), we obtain 

parameters  for the mixture: 
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In Eq. (23) and (24) the binary interaction parameter k  is assumed to be 0 . These 

relations show that the Helmholtz energy is a function of temperature T , molar density of 

discrete component ρ , molar density of continuous component ρ  and the average molecular 

weight of the continuous “components” multiplied by its molar density: 

)( jiij ≠

s t

Mtρ . For paraffins, Eqs 

(23) is given by 
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where the unit of temperature is kelvins; the unit of molecular weight is g ; the unit of a  is 

; and the unit of b  is . Critical temperatures, pressures and acentric factors 

for pure paraffins are from Reid et. al. [19]. Figs. 1a and 1b show the molecular-weight 

dependence of parameters a  and b  for normal alkanes from ethane to hexadecane.  
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Fig.1a Molecular-weight and temperature dependence of SRK parameter a . )(T

Dots: from Eq.(18). Lines: from Eq. (25a) 

From top to bottom, the temperature changes from 200 to 1000K in intervals of 100K. 
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Fig.1b Molecular-weight dependence of SRK parameter . b

Dots: from Eq.(18). Lines: from Eq. (25b) 

 

5. Illustrative Results for Alkane Mixtures 

 We use the numerical algorithm based on a one-dimensional search suggested by Hicks and 

Young [20] for obtaining the roots of Eqs (6) and (8). Although this method requires many 

evaluations of objective functions Eqs. (6) and (8), it guarantees finding all the roots in a given 

region. The stability test is performed after obtaining the roots of Eqs.(6) and (8). In the figures to 

follow, we omit curves showing the limits of unstable and metastable regions.  

The SRK equation of state gives good results for the critical loci of binary alkane mixtures. 

Here we give two examples. Fig. 2 shows the Type I critical locus for the binary system methane-

propane. (For classification of critical loci, see the review by van Konynenburg and Scott [21] 

and the book by J. Rowlinson [22].) Experimental data [23] are in good agreement with 

calculated results using k . Fig. 3a shows the critical locus for the binary system methane-

hexane; Fig. 3b gives a local enlargement of Fig. 3a near the critical point of methane. 

Calculations are based on k . Fig. 3 shows that the critical locus of methane-hexane is of 

Type V. In this case, there exists a three-phase liquid-liquid-gas equilibrium near the critical 

temperature and pressure of methane. At a certain pressure, there exist two critical points, one is 

013 =

16 = 0



a liquid-liquid critical point and the other is a vapor-liquid critical point. Calculated results are in 

good agreement with experimental data [23,24,25] but the small three-phase-equilibrium region 

is represented only qualitatively.  
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Fig. 2  Critical locus for the binary system methane-propane 

Dots: experimental data [23]; line: calculated critical locus; dashed lines: saturated vapor 

pressures of the pure components 
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Fig. 3a  Critical locus for the binary system methane-hexane 

Dots: experimental data [23,24,25]; lines: calculated critical locus; dashed lines: saturated vapor 

pressures of the pure components 
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Fig. 3b  A local Enlargement of Fig. 3a near the critical point of methane(C).   

The saturated vapor pressure of methane is omitted. 



 

We now consider a multicomponent mixture of normal alkanes. In a typical natural-gas 

mixtures, methane is present in excess. We choose methane as the discrete component and 

represent the concentration of ethane to hexadecane (C2 to C16) by a beta-distribution function of 

the molecular weight:  
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where Mmin and Mmax are boundary values;  is the beta function: ),( βαΒ
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where α are parameters determined by the average molar mass and the variance for the 

continuous “component”. To include ethane and hexadecane, we choose for the lower boundary a 

molar mass slightly smaller than that of ethane and for the upper boundary, a molar mass slightly 

larger than that of hexadecane: we set  and .  

βand

25min =M 230max =M

 Fig. 4a shows how the calculated critical locus depends on the mean molar mass while 

keeping the variance constant. Fig. 4b is a local enlargement of Fig. 4a near the critical point of 

methane. When the mean molecular weight of the continuous “component” increases, the critical 

locus moves to higher temperatures. Fig. 4b shows that, at a certain value of mean molar mass, 

the critical locus changes from Type I to Type V, i.e. from a continuous line to two discontinuous 

lines. Line 1 shows a Type I critical locus and line 2 shows a Type V critical locus. We do not 

find other types when the average molar mass lies between  and .  minM maxM
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Fig. 4a  Calculated critical locus for mixtures containing methane and a continuous alkane 

“component” from C2 to C16.  Solid lines: critical loci; dashed line: saturated vapor pressures of 

methane; C is the critical point of methane; 1: 60=M , 100
22 =− MM ; 2: 70=M . For both 

cases 1 and 2, the variance 100
22 =− MM  
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Fig. 4b  A local enlargement of Fig. 4a 



 

 Figs. 5a and 5b show how the critical locus depends on the variance of the distribution 

function while keeping the mean molar mass constant. Fig. 5b is a local enlargement of Fig. 5a 

near the critical point of methane. When the variance increases, the critical locus extends to 

higher temperatures. Fig. 5b shows that at a certain value of the variance, the critical locus 

changes from Type I to Type V. Line 1 is a Type I critical locus and line 2 is a Type V critical 

locus. 
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Fig. 5a  Calculated critical locus for mixtures containing methane and a continuous alkane 

“component” from C2 to C16. Solid lines: critical loci; dashed line: saturated vapor pressure curve 

of methane; C is the critical point of methane; 1: 10
22 =− MM ; 2: 200

22 =− MM . For both 

lines 1 and 2, the mean molecular weight 65=M  
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Fig. 5b  A local enlargement of Fig. 5a 

6. Conclusion  

We have established stability criteria for a system containing one discrete and one continuous 

“component” where molecular-thermodynamic model parameters depend on the first and higher-

order moments of the distribution variable. While the derivation described here can be 

generalized to systems that contain several discrete components and several continuous 

“components”, the procedure for such systems is tedious (see Appendix).  

 To illustrate applicability, the SRK equation of state is used here for calculating the critical 

loci of natural-gas systems where (discrete) methane is in a (continuous) multicomponent mixture 

with higher normal alkanes up to hexadecane. 
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Appendix :  

Derivation of Spinodal Criterion 

According to stability theory [26], stability is attained when the 2nd-order variation of the free 

energy is non-negative, i.e. 
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variables. The 2
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nd-order variation of δ  is a quadratic form of the vector 

; it is given by 
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To make Eq. (A2) larger than or equal to zero, the sufficient and necessary condition is that the 

determinant of the coefficient matrix is positive definite. In the limit of stability, the determinant 

vanishes. We obtain the well-known spinodal criterion for multicomponent system first suggested 

by Gibbs  
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Now we use Eq. (A2) to obtain the spinodal criterion for the system where one component is 

discrete and the other “component” is characterized by a distribution function. The objective now 

is to replace the derivatives of the free energy with respect to the density of a virtual component 

in Eq. (A3) by those with respect to moments of the distribution function. Eq. (A3) can be 

rewritten in the equivalent form 
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Eq. (A3) is the sufficient and necessary condition that Eq. (A4) has a nontrivial solution. Using 

Eq. (1-4), the first linear equation in Eq. (A4) can be rewritten as 
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where subscripts s, m represent the derivative with respect to ρ  and s
mMtρ ,  

respectively. In Eq. (A5), we have used the following relations according to Eq. (4) 
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Eqs. (A6a) and (A6b) follow because for a defined number of virtual discrete components to 

represent the continuous “component”, M  is a constant. For example, we suppose that we 

regard the paraffins as a continuous “component” where M  is the number of carbon atoms in a 

molecule varying from 1 to 20 and i  represents the ordinal number corresponding to this defined 

separation of continuous “component”. If we split the continuous distribution of parrafins into 

190 virtual components, then, for example i  represents a virtual component which has 2.5 

carbon atoms in a molecule, i.e.  for i .  

i
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Multiply the i+1-th row of Eq. (A4) by , n . We obtain with the help of Eq. 

(A6) the equation 
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Summing up the second equality of Eq. (A7) with respect to i  from 1 to  and multiplying by 

, we obtain  
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Combining the second equality of Eq. (A5) with Eq. (A8) and arranging these equations in an 

order such that Eq. (A5) is the first, Eq. (A8) with  is the second, Eq. (A8) with  is the 

third and so on, we obtain an infinite-dimensional linear system of vector  

0=n 1=n

v

 ( )L4
t

3
t

2
ttts

T MMMM ρρρρρρ δδδδδ=v δ        (A9) 

where superscript T represents the matrix transpose. We denote the coefficient matrix of this 

infinite-dimensional linear system by A. According to Eq. (A5, A8), we find that the coefficients 

in A concerned with lMtρδ  ( l ) are all RT . The elements of A have the properties as 

following 
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where ×  represents the non-zero term; the blank parts are all zero. The first  rows of matrix 

A are concerned only with the first  components of vector v and form a square matrix; they 

are given by 
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where ,  and the subscript (  represents the first N  

columns and rows of matrix A. The sufficient and necessary condition for which Av  has a 

nontrivial solution is that the determinant of the coefficient matrix is zero, i.e.,  

1
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where L is an arbitrary integer. Because we use all moment orders of the distribution in Eq. (A8) 

and because a set of moments uniquely determines a distribution [27], therefore the 2nd-order 

variation of the free energy includes all possible variations of the distribution function. As a 

result, Eq. (A13) is equivalent to Eq. (A4). The spinodal criterion is given by 

 0                 (A14) det )2()2(sp == +×+ NNF A

where subscript sp represents “spinodal”.  

 

Derivation of Critical Criterion 

According to stability theory, the critical criterion is that the 3rd-order variation of the free 

energy per unit volume vanishes.  
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This is equivalent to 

 0   .                    (A16) sp =δF

From Eq. (A12),  is a function of ρ  and spF s NmM m 2,,1,0,t L=ρ . Eq. (A16) can be written in 

the form 
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At the critical point, the spinodal criterion must also be satisfied. Thus the variation of ρ  and s

NmM m 2,,1,0,t L=ρ

0Av =

 must satisfy the equation Av  where A and v are given by Eqs. (A11) 

and (A9) respectively. Similar to Heideman’s work [18], we solve the singular linear system 

 to obtain at least one nontrivial value of vector 
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substitute the solution into Eq. (A17). If Eq. (A17) is not satisfied, then this point is not a critical 

point.  

A similar procedure uses another equivalent equation. Combining Eq. (A17) with the first 

 rows of Eq. (A8), we obtain another linear system  22 +N
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where  are given by Eq. (16). A critical point must satisfy the condition that Eq. 

(A18) has a nontrivial solution for the vector of variations. Since only the first  rows of A 

are concerned with ρ  and 

22,, +≤ NjiAij

s

22 +N

NmM m 2,,1,0,t L=ρ , other rows with variations of higher order 

moments  are of no concern. The first N  rows in Eq. (A18) are linearly dependent 

because they satisfy Eq. (A14). At a first-order critical point, N  rows among them are 

linearly independent. However, we do not know which of these are linearly independent. Because 

component s is discrete, the 1

)2( Nm > 2+

1+

2

st row of Eq. (A18) is independent of the others. The linear 

dependent row is somewhere between the 2nd row and the N -th row. For simplicity, we 

multiply the 2

+
nd line by M−  and add it to the 3rd line and then cancel the 2nd line. The critical 

criterion is given by 
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where subscript cr represent “critical”.  

From inspection of Eq. (A12), we can directly generalize Eq. (A12) to the spinodal criterion 

for a system containing  discrete components and one continuous component. It is given by K

Adetsp =F                    (A20) 

where matrix  is given by A
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where  is the number of discrete components; subscript s  means the discrete component i ; 

 is the derivative of the residual free energy with respect to molar density of discrete 

component i ;  is the derivative of the residual free energy per unit volume with respect to 

moment 

K i

r
Si

f

r
mf

mM . The derivation of the critical criterion is similar to the generalization given by Eq. 

(A12) to Eq. (A21). For the stability criteria of a system that contains several continuous 

“components”, the derivation is the same but tedious. 
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